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Abstract 

 
3D Cross-Modal Retrieval (3DCMR) is a task that retrieves 3D objects regardless of 
modalities, such as images, meshes, and point clouds. One of the most prominent methods 
used for 3DCMR is the Cross-Modal Center Loss Function (CLF) which applies the 
conventional center loss strategy for 3D cross-modal search and retrieval. Since CLF is based 
on center loss, the center features in CLF are also susceptible to subtle changes in 
hyperparameters and external inferences. For instance, performance degradation is observed 
when the batch size is too small. Furthermore, the Mean Squared Error (MSE) used in CLF is 
unable to adapt to changes in batch size and is vulnerable to data variations that occur during 
actual inference due to the use of simple Euclidean distance between multi-modal features. To 
address the problems that arise from small batch training, we propose a Noisy Center Loss 
(NCL) method to estimate the optimal center features. In addition, we apply the simple 
Siamese representation learning method (SimSiam) during optimal center feature estimation 
to compare projected features, making the proposed method robust to changes in batch size 
and variations in data. As a result, the proposed approach demonstrates improved performance 
in ModelNet40 dataset compared to the conventional methods. 
 
 
Keywords: Center Loss, Cross-Modal, Object Retrieval, Representation Learning, Self-
Supervised Learning, Supervised Learning 
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 1. Introduction 

Recent advances in sensor and hardware technology have brought forth improvements in 
deep learning methods. Data acquisition from 3D objects is no longer limited to image-based 
methods. Various modalities, such as images, meshes, and point clouds, are used to obtain 3D 
information. For example, Simultaneous Localization and Mapping (SLAM) and Light 
Detection and Ranging (LiDAR) use information from point clouds and meshes for 3D space 
and object reconstruction [1-5]. Neural Radiance Field (NeRF) is a technique that has become 
popular for 3D object reconstruction from a partial set of 2D images [6]. With the emergence 
of technologies that use different types of modalities, it has become necessary to understand 
the 3D object attributes at the raw data level and identify their relationship or relevance in 
different modalities. 

Object retrieval is a task that retrieves objects with similar characteristics using feature 
comparison. A similarity-based search is performed on the extracted features of the objects. 
To enable efficient object retrieval in a supervised environment, it is necessary to extract the 
features that are distinctive for each object instance. Specifically, the inter-class variance 
should be high to provide a clear distinction among the different classes. To perform cross-
modal search tasks, it is also necessary to maintain low inter-modal variance to cluster together 
features that show similar characteristics among the different modalities. The same class of 
objects in different modalities should exhibit similar feature distribution, making them rank 
higher when searching based on similarity criteria. Therefore, a different approach is needed 
to address cross-modal retrieval tasks. 

One of the most prominent methods used for 3D Cross-Modal Retrieval (3DCMR) is the 
Cross-Modal Center Loss function (CLF) [7]. CLF extends the center loss approach, which 
was originally proposed for classification tasks, to the cross-modal domain [8]. Specifically, 
CLF uses the idea of converging to the center feature, which acts as an anchor in a 3D multi-
modal environment. It demonstrated notable performance in 3DCMR with its unique and 
intuitive approach. While CLF benefits from the strengths of center loss, it also exhibits 
drawbacks inherent in center loss. Due to CLF’s high reliance on central features, it is 
susceptible to external configuration variations, such as hyperparameters. For instance, there 
can be a significant performance difference depending on the selection of the batch size. 

Furthermore, the Mean Square Error (MSE) employed in CLF calculates the Euclidean 
distance between modalities to reduce the inter-modal variance. However, the MSE, which 
simply focuses on representing the similarity between modalities, is unable to adapt to the 
changes when testing inference using different datasets. It also lacks robustness against 
changes in batch size for the same reason. To extract features that can reduce inter-modal 
variance in actual evaluation environments, a method is required that can respond to dataset 
changes during inference. Instead of using simple Euclidean distance, the overall context needs 
to be compared using projected features. 

The method of performing feature comparisons based on projection features has been 
studied for a long time using various approaches. Among these, Simple Siamese 
Representation Learning (SimSiam) stands out as one of the most prominent methods [9]. 
SimSiam avoids the issue of model collapse by using only positive samples. Another 
distinctive feature of SimSiam is its robustness regardless of the batch size, as it performs 
training using only positive samples. Therefore, SimSiam could be applied to a multi-modality 
consisting of positive multi-modality samples and used for 3DCMR tasks. 

In this paper, we propose a novel Noisy Cross-Modal Center Loss Function (NCF), an 
extension of CLF with added noise, to overcome degradation due to small batch sizes and to 
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establish anchor features that are robust in actual inference evaluation. The method also 
incorporates the use of projected features between modalities to enhance performance. The 
contributions offered by the proposed method are as follows: 

 
 The proposed method utilizes noisy center features in addition to the robust center 

loss for training, aiming to enhance robustness compared to conventional approaches. 
Through this additional adjustment, the proposed method demonstrates improved 
performance in response to variations in actual experiments. 

 The proposed method discards MSE and adapts SimSiam for 3DCMR tasks to reduce 
inter-modal variance. SimSiam trains similar attributions using only positive samples. 
Performance improvements have been observed by using projection features from 
positive samples and applying SimSiam when using small batch sizes. 

 A quantitative comparison with the baseline CLF is conducted using ModelNet40 
multi-modal 3D object dataset [10]. Both qualitative and quantitative results are 
discussed and analyzed. 

2. Related Works 
3DCMR is a methodology for searching objects across different modalities and faces the 
additional challenge of comparing inter-modal similarities. To address this issue, various 
methods have been proposed over time. 

2.1 3D Object Feature Learning in Each Modality 
Currently, 3D object models can be represented in different modalities, such as 2D images, 
meshes, and point clouds. With the development of deep learning, it has become essential to 
apply a suitable network for each modality to represent optimal features in constrained 
dimensions. Each modality uses different methods to capture distinctive features. 

Various feature aggregation-based approaches from multi-view images have been 
predominantly proposed in the image modality. The representative approach is Multi-view 
Convolutional Neural Networks (MVCNN), which obtains multi-view images from 3D 
objects and extracts features for aggregation using CNN [11]. Following MVCNN, approaches 
such as Triplet-Center Loss (TCL) and Multi-View Transformation Network (MVTN) have 
been proposed [12, 13]. TCL aims to maximize margins through triplet-center loss. MVTN 
uses a differentiable renderer to acquire optimal viewpoint images. In addition, various other 
Graph Convolutional Network (GCN) based approaches have been suggested [14-16]. 

In the mesh modality, the representation process accompanies various components, such 
as vertices, faces, and neighboring indices. The emphasis is placed on the continuity among 
these components. MeshNet introduced a framework employing spatial and structural 
descriptors for triangular mesh data [17]. The framework attempted to represent optimal 
features employing both spatial discontinuity specificities, like vertices and neighboring 
indices. In addition to MeshNet, mesh representation methods have been proposed by several 
other approaches [18-20]. 

Unlike meshes, point clouds are composed of an unordered collection of individual points 
with no particular order and continuity. PointNet utilized Multi-Layer Perceptron (MLP) and 
max pooling to aggregate features for identifying structural features within these unordered 
point sets [21]. PointNet also employed a symmetric network structure to leverage 
permutation-invariant feature representation. Subsequently, various other convolutional 
networks have been proposed [22-25]. A graph-based K-Nearest Neighbor (KNN) approach 
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was introduced in Dynamic Graph Convolutional Neural Network (DGCNN) to capture 
geometric relationships between points, which led to significant performance improvements 
[26].  

Likewise, the representation methods have been developed to suit the attributions of each 
modality. In cross-modal tasks, the objective is to integrate these networks and find 
representations of similar features among the different modalities. 

2.2 Self-Supervised Learning of Visual Representations 
Self-supervised learning, where the model trains itself without labels, is currently one of the 
most active research areas in artificial intelligence. Its research primarily focuses on using 
contrastive learning that leverages relative feature differences in specific samples to extract 
features that are as similar as possible or as different as possible. To achieve this, contrastive 
learning typically applies pairs of positive and negative samples while training. 

The Simple Framework for Contrastive Learning of Visual Representations (SimCLR) 
method received much attention by studying data augmentation-based contrastive learning 
techniques and exhibiting a wide range of experiments [27]. Subsequently, the Momentum 
Contrast (MoCo) method addressed the computational complexity issue by comparing all 
negative samples [28]. MoCo suggested a new learning approach that stores and utilizes 
negative representations like a memory bank, to overcome the computational complexity 
caused by the excessive number of negative samples. However, these methods gradually 
displayed limitations, leading to the introduction of non-contrastive learning techniques that 
aim to perform learning using only positive samples. 

In previous studies, the sole use of positive samples led to model collapse, where the 
network outputs almost identical values resulting in similar embedding vectors, causing 
ineffective learning. To prevent model collapse, Bootstrap Your Own Latent (BYOL) 
proposed the use of a momentum encoder and an asymmetric network structure with a stop 
gradient strategy [29]. As a result, the network was only updated once, enabling smooth 
network training. Following BYOL, SimSiam offered a solution for preventing model collapse 
using a simpler structure without using a momentum encoder while simultaneously improving 
performance. SimSiam also demonstrated modest to good efficiency across different batch 
sizes. 

The model collapse phenomenon creates the illusion of loss convergence, where the 
network exhibits the same output for any training input values. If augmented data derived from 
the same image are used during the feature learning process, the extracted features will 
propagate consistently to the same network. As a result, the network will try to decrease loss 
easily by outputting constant values that are almost similar with no relevance to the input. To 
address this issue, methods that employ asymmetric structures and stop-gradient strategies 
(e.g., BYOL and SimSiam) as well as methods that use negative sample placement (e.g., 
SimCLR) have been proposed. The cross-modal SimSiam used in the proposed method 
prevents model collapse by using a different encoder network per modality. The results from 
backpropagation end up in different backbone networks. Consequently, networks learn 
distinctively for each modality, preventing the occurrence of model collapse phenomenon. 

2.3 Feature Representation Learning in Multi-modality 
Cross-modal retrieval has been previously researched extensively in image-point and image-
text modalities. These studies have focused on representation learning which integrates various 
attributes across modalities to represent them at the same feature level. The results from the 
studies are currently being applied to perform various tasks. 
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CrossPoint is a cross-modal study conducted in the image-point modality [30]. CrossPoint 
estimates the similarity between image and point cloud data by applying self-supervised 
contrastive learning using inter-class and inter-modal comparison with data augmentation. In 
the proposed two-stage method, the inter-modal representations are learned by comparing 
augmented cloud point object data, and inter-modal representations are estimated by 
comparing 2D multi-view images. Following CrossPoint, similar methods have been proposed 
to extract features through cross-modal comparisons based on the self-supervised approach 
[31-34]. 

Methods that leverage multi-modality between images and text are one of the most widely 
researched areas. Deep Supervised Cross-modal Retrieval (DSCMR) tries to find a common 
representation space to compare images and text directly [35]. DSCMR demonstrates good 
performance by using three fundamental losses. First, it compares features in the common 
space after the backbone network. Next, the labels from the extracted label space are compared 
using the projection head. Lastly, cross-modal comparisons are performed to find consistent 
feature representations between images and text. DSCMR compares features at the semantic 
level using label predictions. Unlike DSCMR, Multimodal Contrastive Training (MCT) 
considers inter- and intra-modality relationships between images and text using contrastive 
learning [36]. Inspired by Supervised Contrastive Learning (SCL), MCT employs data 
augmentation to extract common features between relevant images and text [37]. 

In the field of 3DCMR, CLF serves as the reference baseline work. CLF extends center 
loss to encapsulate multi-modality. CLF extracts and compares features from all modalities 
and ensures that they converge to the center feature for the corresponding class regardless of 
the modality. This method yielded excellent results in the early stages of the research. 

However, center loss-based methods are inherently vulnerable to external parameters, such 
as batch size. Significant performance variations can be observed depending on the batch size 
used. Moreover, it has been proven that the use of MSE does not adapt to changes robustly 
during the inference stage in actual evaluation. Therefore, we propose a method that improves 
upon CLF to overcome these drawbacks and to offer an efficient approach for 3DCMR. 

3. Proposed Method 

 
Fig. 1. The framework of the proposed method. 
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As previously pointed out, existing methods based on center features are sensitive to external 
factors. It has been observed that high-performance achievement is unattainable when small 
batch sizes are used. The proposed method consists of several processes that enable the 
extraction of robust features. Fig. 1 shows the framework of the proposed method. 

3.1 Preliminary Information 
For the embedding features 𝑓𝑓  that are extracted through the backbone network for each 
modality, 𝐶𝐶 is the set of center features 𝑐𝑐 ∈ ℝ512, representing each class. In addition, 𝑓𝑓𝑏𝑏 and 
𝑐𝑐𝑦𝑦𝑏𝑏  represent the features of the respective batch data 𝑏𝑏 and the center feature 𝑐𝑐 corresponding 
to its ground truth label, 𝑦𝑦𝑏𝑏. The conventional center loss can be expressed as in (1), where 𝐵𝐵 
represents the batch size. 
 
 

       (1) 
 
 
The cross-modal center loss used in CLF, which is derived from the conventional center loss, 
is shown in (2). In the equation, 𝑀𝑀 stands for multi-modality. Center features are computed 
from batch data regardless of modality in CLF. 
 
 

       (2) 
 
 
The initial equation for SimSiam loss is shown in (3). For each training image, SimSiam 
acquires two augmented data. Features 𝑧𝑧1 and 𝑧𝑧2 are projected through the encoder. Features 
𝑝𝑝1 and 𝑝𝑝2 are extracted through the predictor using 𝑧𝑧1 and 𝑧𝑧2. 
 
 

    (3) 
 
Cosine similarity, cos, is used for comparing feature similarities in (3) and can be expressed 
as shown in (4). 
 
 

     (4) 
 
 
In (3), model collapse occurs if training is performed using only positive samples. Therefore, 
the ‘stop gradient’ is needed to suppress the training of Encoder features 𝑧𝑧1 and 𝑧𝑧2. The results 
after applying the ‘stop gradient’ can be expressed as �̂�𝑧1 and �̂�𝑧2. The final SimSiam loss is as 
shown in (5). 
 

    (5) 
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3.2 Noisy Center Feature 
The proposed method employs NCF to extract robust center features and adapts to variations 
in the data during the inference process. Through the NCF, the proposed method not only uses 
the center features extracted from the training but also incorporates comparisons with noise-
added center features to robustly handle various changes. The noisy center loss 𝐿𝐿𝐶𝐶, where NCF 
is applied to multi-modality 𝑀𝑀, is represented by (6). 𝐺𝐺, σ, and 𝜃𝜃 denote the Gaussian noise 
function, the standard deviation of the noise, and the mean of the noise, respectively. 
Furthermore, the parameters 𝛼𝛼 and 𝛽𝛽 indicate their respective weights. 
 
 

   (6) 
 
 

3.3 SimSiam for Intra-class Variation 
After enabling inter-class discrimination with the adaptation of the NCF, it is necessary to 
reduce inter-modal variance for extracting similar features regardless of the modalities. 
Therefore, to decrease the feature distribution within the same class, a loss function that 
utilizes feature comparisons is applied. 

As previously mentioned, the conventional approach employed by the CLF, such as using 
the simple Euclidean distance in MSE, may not be an efficient method since the feature 
distribution will be different for the inference data. Therefore, it is necessary to apply a robust 
method that strongly reduces inter-modal variance to take changes in data into account. In 
addition, there is a need to apply a robust loss to deal with the sensitivity of the center features. 
At the same time, a method that comprehensively utilizes the samples in each modality is 
necessary. 

The proposed method addresses these issues by employing cross-modal SimSiam, which 
utilizes positive samples to extract features for cross-modal comparison. For a given batch 
data, features extracted from different modalities are denoted as 𝑍𝑍 = {�̂�𝑧𝑚𝑚}𝑚𝑚=1

𝑀𝑀  and 𝑃𝑃 =
{𝑝𝑝𝑚𝑚}𝑚𝑚=1𝑀𝑀 . Cross-modal SimSiam treats each modality features as positive samples of each 
other, transforming them to extract similar features. Equation (7) represents the proposed 
cross-modal SimSiam. 
 

   (7) 
 
 
In (7), the proposed method treats each modality as the augmented data of each other, thereby 
utilizing projected features to depict the similarity between different modalities in a multi-
modal environment. By defining inter-modal similarity in this manner, the proposed method 
increases inter-class variance and decreases inter-modal variance simultaneously, enabling the 
creation of meaningful feature clusters. Fig. 2 illustrates the difference between (a) the original 
SimSiam and (b) the proposed cross-modal SimSiam. 
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Fig. 2.  The architecture of (a) SimSiam and (b) the proposed cross-modal SimSiam. 

 

3.4 Loss Functions 
The final formulation of the proposed method is as follows. First, the embedding features 
extracted through the backbone network are processed to obtain projected features using the 
MLP-based projection network, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 . Subsequently, the label prediction loss 𝐿𝐿𝑃𝑃  used for 
feature classification through label prediction is denoted as (8). 
 
 

   (8) 
 
 
The final loss 𝐿𝐿, which combines the label prediction loss 𝐿𝐿𝑃𝑃, the noisy center loss 𝐿𝐿𝐶𝐶 using 
NCF, and the cross-modal SimSiam loss 𝐿𝐿𝐶𝐶𝐶𝐶, is represented in (9), where 𝛼𝛼, 𝛽𝛽, and 𝛾𝛾 represent 
the weights for each loss. 
 
 

 (9) 
 

 

4. Experimental Results 
To evaluate the effectiveness of the proposed method in performing 3DCMR tasks, we present 
the dataset used for evaluation and the details of the experimental procedure. In addition, we 
provide both quantitative and qualitative evaluation results in comparison to existing methods. 
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4.1 Dataset 

 
Fig. 3.  Sample data from the ModelNet40 dataset. 

 
To verify and validate the effectiveness of the proposed method, we use the ModelNet40 
dataset for evaluation. The ModelNet40 dataset is a collection of 3D CAD object data from 40 
different class categories. It consists of 9,840 training data and 2,468 test data samples. The 
use of ModelNet40 facilitates quantitative comparison with the baseline CLF method in 
performing 3DCMR tasks. We use the same pre-processed dataset for evaluation which is 
available at https://github.com/LongLong-Jing/Cross-Modal-Center-Loss. 

4.2 Experimental Details 

The experiments were conducted using a Linux Ubuntu server machine equipped with an Intel 
Xeon E5-2698 2.20 GHz CPU, 256 GB RAM, and four NVIDIA TITAN Xp GPUs.  

To verify the performance of the proposed method, training was carried out using various 
batch sizes, and we applied cosine learning rate decay during the training process. The 
backbone network used 512-dimensional features. The proposed cross-modal SimSiam 
method uses a projection network that composes the encoder and a prediction network that 
extracts feature 𝑝𝑝 from the projected feature �̂�𝑧. Unlike the original SimSiam, networks in the 
proposed cross-modal SimSiam use a simple multilayer perceptron (MLP) structure with no 
batch normalization. The MLP consists of a linear layer, a Rectified Linear Unit (ReLU) 
activation function, and an additional linear layer. The network for label prediction also uses 
the same MLP structure. We used 1,024 sampling points for point cloud and four multi-view 
images to extract representative features. The proposed method uses the same networks used 
in CLF for individual multi-modality feature extraction. Features for images, meshes, and 
point clouds are extracted using ResNet [38], MeshNet [17], and DGCNN [26], respectively. 

In addition, to extract distinctive features, data augmentation was applied for training each 
modality. In the image modality, random crop and horizontal flip were applied to the 180 
randomly captured multi-view images of an object. In the mesh modality, random jittering was 
applied. Random translation, rotation, jittering, and scaling were applied in the point-cloud 
modality. 

In the experiments, the performance evaluation was based on mean Average Precision 
(mAP). Average Precision (AP) is a single value that represents the overall performance of the 
algorithm. In the context of a 3DCMR task, it reflects the accuracy of retrieval results for each 
class. When a similarity search for a given object is performed, similar objects, i.e., objects 
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belonging to the same class as the given object, should be placed at the front of the result list. 
Simply put, the AP quantifies how high in the list of retrieval results are the objects from the 
same class. As stated in the CLF, given test set 𝑇𝑇 and target class 𝑦𝑦, if the number of data items 
belonging to class 𝑒𝑒 is 𝑣𝑣𝑦𝑦, the AP is computed as shown in (10). 
 
 

 (10) 
 
 

In (10), 𝑃𝑃𝑃𝑃𝑒𝑒𝑐𝑐 denotes the precision of the first 𝑡𝑡-th retrieved data, and 𝕝𝕝 is an indicator 
function that outputs a 1 if the current class is the same as the target class 𝑦𝑦 and 0 otherwise. 
From (10), the mAP is defined as follows: 
 
 

 (11) 
 

 

4.3 Quantitative Results 
To provide evidence of the effectiveness of the proposed approach, comparative experiments 
were carried out under various conditions. Initially, the proposed method was tested for 
learning with different batch sizes, and the results are presented in Table 1. CLF shows better 
performance as the batch size increases. However, the proposed method performs better when 
the batch size becomes smaller. Given a small batch size, if the relationship between modalities 
is defined using simple Euclidean distance, there is a limited amount of data that can be 
compared per learning iteration during training. Therefore, it can be concluded that there is 
potential for improving performance through context-based learning using projected features, 
rather than relying on simple comparisons. 
 

Table 1. Comparison of the proposed method with baseline (CLF) using various batch sizes. 
Batch Size: 12 

From Image Image Image Mesh Mesh Mesh Point Point Point Mean 
mAP To Image Mesh Point Image Mesh Point Image Mesh Point 

CLF 45.67 13.89 32.32 25.50 06.98 08.29 59.50 27.68 15.87 26.19 
ours 51.61 10.57 22.16 10.03 38.98 15.48 21.17 15.04 52.20 26.36 

Batch Size: 24 
From Image Image Image Mesh Mesh Mesh Point Point Point Mean 

mAP To Image Mesh Point Image Mesh Point Image Mesh Point 
CLF 63.56 73.22 72.08 88.44 68.81 84.60 82.44 67.46 83.56 76.02 
ours 86.53 82.39 78.04 78.12 79.34 74.25 63.27 71.9 71.29 76.13 

Batch Size: 48 
From Image Image Image Mesh Mesh Mesh Point Point Point Mean 

mAP To Image Mesh Point Image Mesh Point Image Mesh Point 
CLF 85.64 86.94 85.59 88.91 86.50 86.67 85.44 84.67 86.62 86.33 
ours 89.23 88.94 86.18 87.23 87.90 84.93 81.75 83.11 79.40 85.41 
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To compare the performance of the NCF utilized in the proposed method, experiments were 
conducted using a fixed batch size. Table 2 presents the results which show that applying NCF 
yields better performance. NCF can perform robust learning in noisy environments, resulting 
in better performance. 
 

Table 2. Comparison between w/ and w/o NCF. 
Batch Size: 48 

From Image Image Image Mesh Mesh Mesh Point Point Point Mean 
mAP To Image Mesh Point Image Mesh Point Image Mesh Point 

w/ 
NCF 89.23 88.94 86.18 87.23 87.90 84.93 81.75 83.11 79.40 85.41 

w/o 
NCF 89.60 88.81 84.92 88.00 88.27 83.89 79.89 81.05 77.44 84.65 

 

4.4 Qualitative Results 
To verify whether our proposed method performs well in 3DCMR tasks, we provide 
qualitative experimental results. The similarity search results are shown in Fig. 4. As shown 
in the figure, our proposed method also demonstrates the ability to conduct similarity-based 
searches smoothly. 

4.5 Discussion 
In this paper, we propose a method to improve the conventional CLF to extract robust center 
features. Center features are highly sensitive, displaying variations in performance depending 
on the batch size, as seen from the CLF results in Table 1. Moreover, using simple Euclidean 
distance makes it difficult to adapt to data changes when using small batches for training. 
Therefore, there is a need for robust center feature extraction and stronger inter-class 
discriminative capabilities. As a result, it was confirmed that when training with small batch 
sizes, learning based on context through the comparison of positive samples at the projection 
level improves accuracy compared to the conventional method. 

5. Conclusion 
This paper proposes a new method that can extract robust features under small batch sizes for 
3DCMR tasks. The conventional CLF, which serves as the baseline method, uses cross-modal 
center loss to extract robust features for all modalities with no limitations. The adoption of 
center loss resulted in inheriting both its benefits and drawbacks. Fluctuations in performance 
can be observed in CLF depending on the batch size. When the batch size is small, significant 
performance degradation occurs. The proposed method treats multi-modal data as augmented 
positive samples and applies the SimSiam loss which is commonly used in self-supervised 
learning. In addition, noisy center features are applied to extract robust center features. 
Experimental results using the 3D CAD data in the ModelNet40 dataset show that the proposed 
method shows performance improvements when using small batch sizes compared to the 
conventional method. Consequently, the proposed method enables deep learning with 3D data 
even in constrained computational environments. 
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Fig. 4. The qualitative results of 3DCMR using the proposed method on 
ModelNet40 dataset. The objects in the first column represent the target objects, 

while the others denote the top 10 similar objects based on similarity criteria. 
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